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Compact fourth-order finite difference method for solving differential equations
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We present a fourth-order finite difference~FD! method for solving two-dimensional partial differential
equations. The FD operator uses a compact nine-point stencil on a regular square grid. Despite the regular grid,
Dirichlet boundary conditions can be applied on an arbitrarily shaped boundary without resorting to the usual
stepped approximation. We demonstrate the superior convergence of the method over second-order techniques
by solving the Schro¨dinger equation for an electron in a semiconductor quantum dot with a smoothly varying
potential which generates classically chaotic dynamics.
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Finite difference~FD! methods for the numerical solutio
of partial differential equations~PDEs! approximate continu-
ous derivatives by discrete difference operators. These op
tors are obtained from Taylor expansions of the solution
discrete points on a grid. They have a certain order of ac
racy, O(D2) for the simplest method andO(D4) for more
complicated methods, whereD is the grid spacing. The
higher order schemes require far fewer points for num
cally accurate solutions. FD methods are calledcompactif
the ‘‘stencil’’ of grid points used in the difference operat
involves only immediate neighbors of the central point.

For two-dimensional~2D! PDEs, O(D2) methods are
compact and allow boundary conditions to be applied eas
CompactO(D4) methods have been developed for solvi
the 2D elliptic and Helmholtz PDEs@1,2#. In this paper, we
present ageneralcompactO(D4) method in 2D. Dirichlet
boundary conditions can be applied along an arbitr
boundary without recourse to the usual stepped approxi
tion. The superior convergence of thisO(D4) method over
O(D2) schemes is demonstrated by solving the 2D Sch¨-
dinger equation for an open semiconductor quantum dot w
classically chaotic dynamics. We emphasize that the met
can be applied to many other 2D PDEs. For example,
have used it to solve the scalar electromagnetic wave e
tion in a gradient refractive index lens@3#.

A second-order FD approximation to the 2D tim
independent Schro¨dinger equation

2
\2¹2

2m
c~x,y!1V~x,y!c~x,y!5Ec~x,y! ~1!

for the wave functionc(x,y) of a particle of massm, energy
E, and potential energyV(x,y) can be obtained using th
five-point stencil shown as filled circles in Fig. 1. The Tayl
expansion

c i 1a, j 1b5c i , j1 (
n51
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1bD

]

]yD n

c i , j ~2!

is used to derive approximate values of the wave function
the points (i 11,j ), (i 21,j ), (i , j 11), and (i , j 21). In the
O(D2) approximation, the summation is truncated atn52.
The resulting equations show that
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]x2
'

c i 11,j22c i , j1c i 21,j

D2
~3!

and

]2c i , j

]y2
'

c i , j 1122c i , j1c i , j 21

D2
. ~4!

Substituting Eqs.~3! and ~4! into Eq. ~1! and applying the
resulting FD equation to each of theN grid points in the
system givesN simultaneous linear equations. These eq
tions can be written in the form

MC5b, ~5!

where the vectorC contains the discrete wave function va
uesc i , j and the constant vectorb depends on the boundar
conditions. The nonzero elements of the coefficient matrixM
form a narrow band about the leading diagonal with ba
width W}AN. Keeping the band as narrow as possible
important, as the computational effort required to solve E
~5! increases dramatically with increasingW.

The above method can be improved to fourth-order ac
racy by using the spatially extended stencil formed by
nine points shown as filled and dotted circles in Fig. 1. Eq
tion ~2! is used to derive approximations to the wave fun
tion values at the eight points surrounding (i , j ) with the
summation truncated atn54. The resulting equations giv

FIG. 1. Stencils used in the second-order~filled circles!, fourth-
order~filled and dotted circles!, and our compact fourth-order~filled
and crossed circles! FD methods. Each stencil is centered on po
( i , j ).
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O(D4) approximations to]2c i , j /]x2 and ]2c i , j /]y2 in
terms of the wave function values on the extended stenc

While easy to apply and understand, this tradition
fourth-order approach has drawbacks. First, Dirichlet bou
ary conditions can be implemented only with second-or
accuracy@4#. More importantly the bandwidth of the matri
is 2W, double that of theO(D2) method. This doubles the
memory requirements, butquadruplesthe operation coun
and execution time.

Here we develop anO(D4) FD method with the same
narrow bandwidth as theO(D2) method. We consider the
nine-point stencil shown by filled and crossed circles in F
1. The inclusion of the crossed circle points introduces mix
partial derivatives into the Taylor expansion, which is ag
truncated atn54. Using Eq.~2! to determine the wave func
tion values at the eight points surrounding (i , j ) gives eight
independent linear equations of the form

c i 1a, j 1b2c i , j'D@ac x1bcy#1
D2

2
@a2c xx12abc xy

1b2cyy#1
D3

6
@a3c xxx13a2bc xxy

13ab2c xyy1b3cyyy#1
D4

24
@a4c xxxx

14a3bc xxxy16a2b2c xxyy14ab3c xyyy

1b4cyyyy#, ~6!

wherea andb50,61. These equations involve 14 derivativ
terms denoted, for example,c xxxy[]4c i , j /]x3]y. We gen-
erate five more independent equations by repeated diffe
tiation of Eq.~1!:

Vxc i , j5~E2Vi , j !c
x1

\2

2m
c xxx1

\2

2m
c xyy, ~7!

Vyc i , j5~E2Vi , j !c
y1

\2

2m
cyyy1

\2

2m
c xxy, ~8!

Vxxc i , j5~E2Vi , j !c
xx1

\2

2m
c xxxx1

\2

2m
c xxyy22Vxc x,

~9!

Vyyc i , j5~E2Vi , j !c
yy1

\2

2m
cyyyy1

\2

2m
c xxyy22Vycy,

~10!

Vxyc i , j5~E2Vi , j !c
xy1

\2

2m
~c xxxy1c xyyy!2Vxcy

2Vyc x, ~11!

where the derivatives of V ~for example, Vxy

[]2Vi , j /]x]y) are known. The coefficients ofc xxxy and
c xyyy are equal in Eq.~6! ~because eithera50, b50, or
uau5ubu) and in Eq.~11!. Thereforec xxxy1c xyyy reduces to
one independent term. The 13 independent equations inv
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ing the 13 independent derivative terms are solved by
merical matrix inversion for each of theN grid points. This
gives O(D4) approximations to]2c i , j /]x2 and ]2c i , j /]y2

in terms of a weighted sum of the wave function values
the nine points of the compact stencil@5#. Using these ex-
pressions to approximate Eq.~1! at each grid point gives a
matrix equation like Eq.~5!. Typically, the bandwidth ofM
using thisO(D4) method is onlyW11.

Where the value of the wave function is known on
boundary~a Dirichlet boundary condition!, this information
must be included in Eq.~5!. To avoid the traditional steppe
approximation to a curved boundary@4#, we replace each
point in the stencil that lies outside the boundary with a n
point that lies exactly on it. The new point is placed at t
intersection of the boundary and the line connecting the p
( i , j ) to the external point. This ensures that for extern
points at the corners of the stencil thex andy displacements
from (i , j ) are equal, so that the coefficients ofc xxxy and
c xyyy in Eq. ~6! also remain equal. For example, in Fig.
the point (i 11,j 11) ~open circle! lies outside a boundary
~solid line! on whichc50. This external point is replaced b
a new point~filled circle! which lies on the boundary and o
the dashed line at a distancefA2D from the center point,
where 0, f ,1. For the external point in Fig. 2,a5b51 in
Eq. ~6!. The new point hasa5b5 f . The known wave func-
tion value c i 1 f , j 1 f50 can then be inserted into Eq.~6!.
O(D4) approximations to the derivatives are calculated
before, but using the wave function values on the modifi
stencil ~filled circles in Fig. 2!.

We used this method to calculate the transmission pr
erties of semiconductor@6# and optical@3# devices connected
to semi-infinite leads. This involves applying Dirichle
boundary conditions at the walls of the device and a mixt
of Dirichlet and Neumann boundary conditions at the int
face between the device and the lead. Consider the inter
at x50 shown schematically in Fig. 3. In the lead, to the le
of the interface, an electron moves freely in the semi-infin
x direction, but is confined alongy, producing a set of ortho-
normal quantized modes@6#. The wave function in the lead
has the general form

FIG. 2. Example of the compactO(D4) stencil at a boundary
~solid curve!. The point on the square stencil lying outside t
boundary~open circle! is replaced by a new point~filled circle! at
the intersection of the boundary and the dashed line. This new p
is at a fractionf of the distance from the center point to the extern
point.
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cL~x,y!5A exp@ ib l~x2x0!# f l~y!1(
r 51

R

Br

3exp@2 ib r~x2x0!# f r~y!, ~12!

wherebp and f p(y) are the wave number andy dependence
of modep, the incident mode has indexl, and the reflected
modes have indices$r %. The wave number is real for propa
gating modes and imaginary for evanescent modes~which
must be included to ensure correct matching ofc across the
interface!. The complex coefficients of the incident and r
flected modes areA and $Br%, respectively. By matchingc,
the wave function on the grid points inside the device, a
cL at x0 we satisfy the Dirichlet boundary condition. For
given modep, this condition requires that

E f p~y!cL~x0 ,y!dy5E f p~y!c~x0 ,y!dy. ~13!

A discrete approximation to the right-hand integral gives

Bp'D(
k51

K

f p~yk!c0,k2Ad lp , ~14!

where the summation is over theK points along the interface
Differentiating Eq.~12! with respect tox and substituting Eq.
~14! for eachBr gives

]cL~x0 ,yj !

]x
'2ib lA f l~yj !2 iD(

k51

K

c0,k(
r 51

R

b r f r~yj ! f r~yk!.

~15!

At each point (0,j ) on the interface we approximate]2c/]x2

by theO(D2) forward difference equation

]2c0,j

]x2
'

2

D Fc1,j2c0,j

D
2

]c0,j

]x G . ~16!

Since the first derivative ofc must be continuous atx0 ,
]c0,j /]x5]cL(x0 ,yj )/]x. Consequently Eq.~15! can be
used to approximate the first derivative in Eq.~16!. Adding
Eq. ~4! gives anO(D2) expression for¹2c that involves
only known constants and the wave function values at po

FIG. 3. The interface atx5x0 between the lead~regionL, un-
bounded forx,x0) and the FD solution~regionS, bounded at some
x.x0).
04770
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on and immediately to the right of the interface. A discre
approximation to Eq.~1! can then be obtained for each inte
face point and substituted into Eq.~5!. The use of Eq.~16!,
which is second-order accurate, at the interface has a n
gible effect on the accuracy of the solution provided thatK
!N.

To demonstrate the enhanced convergence of ourO(D4)
method, Fig. 4 shows the probability density of an electron
the Fermi energy~8.2 meV! in a quantum dot. The dot has
smooth 2D potential profile that generates classically cha
electron dynamics@6#. Two semi-infinite leads are attache
to the dot, the injection lead is connected to the upper qu
tum point contact~QPC! opening, and the exit lead to th
left-hand QPC opening. In these calculations, ten modes@R
510 in Eq. ~12!# were required in each lead to give goo
convergence. The lowest two of these modes were propa
ing, the other eight were evanescent. Figures 4~a! and 4~b!
show probability density plots calculated using theO(D2)
method. In Fig. 4~a! there are 254 points along each side
the dot, while in Fig. 4~b! there are 348 points along eac
side. Since changing the number of points changes the re
ing wave function, it is clear that these calculations have
converged. By contrast, Figs. 4~c! and 4~d! show similar
plots calculated using theO(D4) method. The convergenc
of this technique is clearly superior to that of theO(D2)
method, as there is no change between Fig. 4~c! ~254 points
per side! and Fig. 4~d! ~348 points per side!.

In conclusion, we have introduced a general comp
fourth-order FD method for solving 2D PDEs. Using th
technique, Dirichlet boundary conditions can be applied
an arbitrarily shaped boundary without resorting to a step
approximation. Our calculations for electrons in a chao
quantum dot demonstrate that the convergence of
method is much better than that of the standard second-o
technique.

This work is funded by EPSRC UK.

FIG. 4. Probability density plots~black high, white 0! for an
electron in a 2D quantum dot calculated using~a! and ~b! the
O(D2) and ~c! and ~d! the O(D4) methods. Solid curves show
equipotentials at the Fermi energy. In~a! and ~c! D5L/255 and in
~b! and ~d! D5L/349 whereL51 mm.
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