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Compact fourth-order finite difference method for solving differential equations
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We present a fourth-order finite differenéED) method for solving two-dimensional partial differential
equations. The FD operator uses a compact nine-point stencil on a regular square grid. Despite the regular grid,
Dirichlet boundary conditions can be applied on an arbitrarily shaped boundary without resorting to the usual
stepped approximation. We demonstrate the superior convergence of the method over second-order techniques
by solving the Schidinger equation for an electron in a semiconductor quantum dot with a smoothly varying
potential which generates classically chaotic dynamics.
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Flnlfte d|_ﬁerenc_e(FD) me_thods for the nur_nerlcal soll_Jtlon (92‘/,”_ Uierj— 20+ 1
of partial differential equation€?DE9 approximate continu- ~ 3
ous derivatives by discrete difference operators. These opera- ax? A?
tors are obtained from Taylor expansions of the solution at
discrete points on a grid. They have a certain order of accu@"
racy, O(A?) for the simplest method an@(A*) for more )
complicated methods, whera is the grid spacing. The I | %’z”i,jﬂ_z‘ﬂi,ﬁ ij-1 )

higher order schemes require far fewer points for numeri- ay? A2

cally accurate solutions. FD methods are cakbednpactif

the “stencil” of grid points used in the difference operator Substituting Egs(3) and (4) into Eq. (1) and applying the

involves only immediate neighbors of the central point. resulting FD equation to each of th¢ grid points in the
For two-dimensional(2D) PDEs, O(A%) methods are system givesN simultaneous linear equations. These equa-

compact and allow boundary conditions to be applied easilytions can be written in the form

CompactO(A*) methods have been developed for solving

the 2D elliptic and Helmholtz PDES,2]. In this paper, we MW=Dh, ()

present ageneralcompactO(A%) method in 2D. Dirichlet _ i _

boundary conditions can be applied along an arbitrar))"’here the vector contains the discrete wave function val-

boundary without recourse to the usual stepped approximai€S¥i,; and the constant vectér depends on the boundary

tion. The superior convergence of ti®&A%) method over conditions. The nonzero elements of_the c_oeff|C|ent _mzth

O(A2) schemes is demonstrated by solving the 2D Schroform a narrow band about the leading diagonal with band-

dinger equation for an open semiconductor quantum dot withVidth W {N. Keeping the band as narrow as possible is

classically chaotic dynamics. We emphasize that the metholPortant, as the computational effort required to solve Eq.

can be applied to many other 2D PDEs. For example, wéd) increases dramatically with increasikig

have used it to solve the scalar electromagnetic wave equa- |he above method can be improved to fourth-order accu-

tion in a gradient refractive index lefi8]. racy by using the spatially extended stencil formed by the
A second-order FD approximation to the 2D time- Nine points shown as filled and dotted circles in Fig. 1. Equa-
independent Schdbinger equation tion (2) is used to derive approximations to the wave func-

tion values at the eight points surroundingjj with the

2y?2 summation truncated at=4. The resulting equations give
~om YOV YY) =Ed(xy) (D)
® O O
for the wave function/(x,y) of a particle of massn, energy Al A
E, and potential energy¥/(x,y) can be obtained using the ® & ® O
five-point stencil shown as filled circles in Fig. 1. The Taylor
expansion © & ©o.0 0
Y. L]
| 9 g\n (0] ‘ ® & ® O
¢i+a,j+b:wi,j+nzlm aA&*”bA@) iy 2@ X

0O 0O ®© O O

is used to derive approximate values of the wave function at FiG. 1. Stencils used in the second-ordited circles, fourth-

the points (+ 3!-,1 ) .(i —1j), (i,j+ 1), and (,j—1). Inthe  order(filled and dotted circles and our compact fourth-ordéilled
O(A?) approximation, the summation is truncatednat2.  and crossed circledD methods. Each stencil is centered on point
The resulting equations show that @i,j).
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O(A*) approximations tod?y; j/9x* and 9%y j/dy? in
terms of the wave function values on the extended stencil.
While easy to apply and understand, this traditional
fourth-order approach has drawbacks. First, Dirichlet bound-
ary conditions can be implemented only with second-order
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accuracy{4]. More importantly the bandwidth of the matrix
is 2W, double that of theD(A?) method. This doubles the
memory requirements, biuquadruplesthe operation count
and execution time.

Here we develop a®(A*) FD method with the same
narrow bandwidth as th©(A?) method. We consider the

nine-point stencil shown by filled and crossed circles in Fig.

1. The inclusion of the crossed circle points introduces mixed FiG. 2. Example of the compa@(A*) stencil at a boundary
partial derivatives into the Taylor expansion, which is againsolid curve. The point on the square stencil lying outside the

truncated ah=4. Using Eq.(2) to determine the wave func-
tion values at the eight points surroundirigj§ gives eight
independent linear equations of the form

AZ
Yivajrb— Yij~Alay*+byY]+ 7[32111”4— 2aby ™Y

3
2.1yy A_ 3,7 XXX 2 XXy
+b¢]+6[a¢ +3a‘by

A4
+3ab2¢xyy+ b3l/lyyy]+ Z[a4¢ XXXX

+4a%py Y+ 6ah?y Y+ 4abdy VY

+b*yy, (6)

boundary(open circle is replaced by a new poirtfilled circle) at

the intersection of the boundary and the dashed line. This new point
is at a fractiorf of the distance from the center point to the external
point.

ing the 13 independent derivative terms are solved by nu-
merical matrix inversion for each of the grid points. This
gives O(A*) approximations tos?y; ;/ax? and d%y; ; 19y?
in terms of a weighted sum of the wave function values at
the nine points of the compact stenfd]. Using these ex-
pressions to approximate EL) at each grid point gives a
matrix equation like Eq(5). Typically, the bandwidth oM
using thisO(A%) method is onlyw+1.

Where the value of the wave function is known on a
boundary(a Dirichlet boundary condition this information
must be included in E(5). To avoid the traditional stepped

whereaandb=0,*=1. These equations involve 14 derivative approximation to a curved boundafy], we replace each

terms denoted, for example;, Y=oy ;/9x>3y. We gen-

point in the stencil that lies outside the boundary with a new

erate five more independent equations by repeated differemoint that lies exactly on it. The new point is placed at the

tiation of Eq.(1):

ﬁZ 2
Vi = (E= Vit oy oy ™, ()
ﬁZ hZ
VI = (E=Vi D+ 5y 5™, 8
h? h?
Vxxwi,j =(E—Vi'j)¢xx+ mwxxxx_l_ﬁwxxyy_zvxl//x,
©)
ﬁ2 2
VIV = (E= Vi )Y+ S g9V o g X0 2\,
(10)
ﬁZ
V= (E=Vi g+ o (7§70 =iy
—VIy¥, (11)

where the derivatives of V (for example, V*¥
Eazvi,j/axay) are known. The coefficients af***¥Y and
Y are equal in Eq(6) (because eithea=0, b=0, or
|a]=]|b|) and in Eq.(11). Thereforey ***Y+ *Y¥¥ reduces to

intersection of the boundary and the line connecting the point
(i,j) to the external point. This ensures that for external
points at the corners of the stencil thendy displacements
from (i,j) are equal, so that the coefficients #f** and
Y in Eqg. (6) also remain equal. For example, in Fig. 2
the point (+1,j+1) (open circle lies outside a boundary
(solid line) on whichy=0. This external point is replaced by
a new poinf(filled circle) which lies on the boundary and on
the dashed line at a distanée’2A from the center point,
where 0<f<1. For the external point in Fig. 2=b=1 in
Eq. (6). The new point haa=b=f. The known wave func-
tion value ¢ ¢ +=0 can then be inserted into E¢).
O(A*) approximations to the derivatives are calculated as
before, but using the wave function values on the modified
stencil (filled circles in Fig. 2.

We used this method to calculate the transmission prop-
erties of semiconductd6] and optical 3] devices connected
to semi-infinite leads. This involves applying Dirichlet
boundary conditions at the walls of the device and a mixture
of Dirichlet and Neumann boundary conditions at the inter-
face between the device and the lead. Consider the interface
atx=0 shown schematically in Fig. 3. In the lead, to the left
of the interface, an electron moves freely in the semi-infinite
x direction, but is confined along producing a set of ortho-
normal quantized modg$]. The wave function in the lead

one independent term. The 13 independent equations involxas the general form
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FIG. 3. The interface at=x, between the lea¢regionL, un-
bounded foix<xy) and the FD solutiofiregionS, bounded at some
X>Xq)-

R
dLO6Y)=AxiTiBi(x—Xo) ITi(Y)+ 2 By FIG. 4. Probability density plotgblack high, white 0 for an
electron in a 2D quantum dot calculated usit@ and (b) the

xXexd —iB(x—Xp)1f(y), (12  0(A? and(c) and (d) the O(A*) methods. Solid curves show

equipotentials at the Fermi energy. (@ and(c) A=L/255 and in
where B, andf(y) are the wave number aryddependence (b) and(d) A=L/349 whereL=1 um.
of modep, the incident mode has inddxand the reflected ) . . ) )
modes have indice§}. The wave number is real for propa- O" and immediately to the right of the interface. A discrete
gating modes and imaginary for evanescent mdgesich approximation to Eq(_l) can_then be obtained for each inter-
must be included to ensure correct matchingyadcross the far(]:_e hp(_)lnt and gub(sjututed into E(). Jhe us? of th(16)' i
interfacg. The complex coefficients of the incident and re- Which Is second-order accurate, at the interface has a negfi-

flected modes aré and{B,}, respectively. By matching, iikl)\lle effect on the accuracy of the solution provided tKat
the wave functi_on on the_ grid points inside the_t_ﬂevice, and T'O demonstrate the enhanced convergence ofiur®)
Yy atX, we satisfy the Dirichlet boundary condition. For a method, Fig. 4 shows the probability density of an electron at
given modep, this condition requires that the Fermi energy8.2 me\} in a quantum dot. The dot has a
smooth 2D potential profile that generates classically chaotic
f fp(y)a,[/L(xo,y)dy=f fo(Y)h(Xo,y)dy. (13  electron dynamic$6]. Two semi-infinite leads are attached
to the dot, the injection lead is connected to the upper quan-
A discrete approximation to the right-hand integral gives UM point contactQPQ opening, and the exit lead to the
left-hand QPC opening. In these calculations, ten mdées
=10 in Eqg.(12)] were required in each lead to give good
Bo~A > fo(Yi)ox—Adip (14)  convergence. The lowest two of these modes were propagat-
K=t ing, the other eight were evanescent. Figurés 4nd 4b)

where the summation is over tHepoints along the interface. Show probability density plots calculated using 1B¢A)
Differentiating Eq.(12) with respect tox and substituting Eq.  Method. In Fig. 4a) there are 254 points along each side of

K

(14) for eachB, gives the dot, while in Fig. 4b) there are 348 points along each
' side. Since changing the number of points changes the result-
L (X0.Y) K R ing wave function, it is clear that these calculations have not

~2i,8|Af,(yj)—iA2 z//o,kz Bt (yp)fe(yi). converged. By contrast, Figs(a} and 4d) show similar
k=1 r=1 (15 plots calculated using th®(A%) method. The convergence
of this technique is clearly superior to that of tlEA?)

At each point (0,) on the interface we approxima#y/gx2 ~ method, as there is no change between Fig) @54 points

by the O(A?) forward difference equation per side and Fig. 4d) (348 points per side
In conclusion, we have introduced a general compact

fourth-order FD method for solving 2D PDEs. Using this
(16)  technique, Dirichlet boundary conditions can be applied on
an arbitrarily shaped boundary without resorting to a stepped
approximation. Our calculations for electrons in a chaotic
guantum dot demonstrate that the convergence of this
method is much better than that of the standard second-order
technique.

ax

Pipoj 2

= %o Itoj
x> A '

A X

Since the first derivative off must be continuous atg,
o 19x= 3 (Xo,Yj)/9x. Consequently Eq(15 can be
used to approximate the first derivative in Ef6). Adding
Eq. (4) gives anO(A?) expression forV2y that involves
only known constants and the wave function values at points This work is funded by EPSRC UK.
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